United States Patent

US009460169B2

(12) (10) Patent No.: US 9,460,169 B2
Hinton et al. 45) Date of Patent: Oct. 4, 2016
(54) MULTI-TENANT AUDIT AWARENESS IN éggg// 8}(1)3;?; :} ggggg gilasserh?t al. A
eorghiolu et al.
SUPPORT OF CLOUD ENVIRONMENTS 2009/0271468 Al 10/2009 Distefano
2009/0300152 Al 12/2009 Ferri
(75) Inventors: Heather M. Hinton, Austin, TX (US); 2010/0058291 Al 3/2010 Hc;r}rlils et al.
Richard Jay Cohen, Austin, TX (US) 2010/0115284 Al 5/2010 Hahn et al.
2010/0299763 Al 112010 Marcus et al.
H . ; : : 2010/0333116 A1 12/2010 Prahlad et al.
(73) Assignee: g‘(f:;’;:;‘t‘:;‘zl B“s'olﬁsggtggfs 2011/0295728 Al* 12/2011 Bulumulla et al. 705/34
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 WO 2006076520 A2 2/2007
U.S.C. 154(b) by 547 days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/004,945
International Search Report, PCT/CA2012/050018, May 10, 2012.
(22) Filed: Jan. 12, 2011
’ * cited by examiner
(65) Prior Publication Data
Primary Examiner — William Spieler
US 2012/0179646 Al Tul. 12, 2012 (74) Attorney, Agent, or Firm — Richard A. Wilhelm;
(51) Int.CI David H. Judson
) IGJ0S6FCi 7/30 (2006.01) (57) ABSTRACT
CPC oo GOGF 17/30557 (2013.01) A cloud enablement aggregation proxy (CEAP) receives and
(58) Field of Classification Search processes audit data from audited resources before such data
USPC 707/736 is stored in a database. The CEAP manages log data for
See a hcatlonﬁleforcomletesearchhlsto resources hosted in a multi-tenant shared pool of configu-
PP P v rable computing resources (e.g., a compute cloud). A method
(56) References Cited for mar}aging log data begins by .the proxy aggrege.lting and
normalizing log information received from a plurality of the
U.S. PATENT DOCUMENTS resources. The aggregated and normalized log information is
_ then parsed to identify a tenant associated with each of a set
7,257,584 B2 8/2007 Hirschfeld et al. of transactions. For each of the set of transactions, the CEAP
20027/6517;§;§‘gg izl N lggggg (1\:/10c§(rory et al. 705/38 annotates log data associated with the tenant and the par-
5004/0133448 Al 7/2004 Higash'iuét' Al ticular transaction to include a tenant-specific identifier. An
2006/0235831 AL* 10/2006 Adinolfi et al. 707/3 optional tenant separation proxy (TSP) separates the anno-
2007/0219992 AL* 9/2007 Bollinger et al.cc....... 707/6 tated log data on a per tenant basis prior to storage, and the
ggggggggz‘ég ﬁ} 3;3882 z[eller et al. o tenant-specific log data may be stored in per tenant data
2008/0082490 Al 4/2008 M(;lculﬁrlfrsi;tet al structures or dedicated tenant log event databases to facili-
2008/0082538 Al 4/2008 Meijer et al. ’ tate subsequent compliance or other analysis.
2008/0082601 Al 4/2008 Meijer et al.
2008/0082782 Al 4/2008 Meijer et al. 21 Claims, 6 Drawing Sheets
606
603
’4—| MULTI-TENANT |
OTHER OMPs UNAWARE OMP

601

604
OTHER OMPs ?)0

CUSTOMER
N/ IDENTIFICATION SERVICE
61 0\| AGGREGATION SERVICE CUSTOMER Id1 | Filter1
CUSTOMER 1d2 | Filter2
61 2/| CUSTOMER INFORMATION SERVICE |
61 4/i LOG ANNOTATION SERVICE | CUSTOMER IdN | FilterN
CLOUD ENABLEMENT AGGREGATION PROXY
618 620

| TENANT SEPARATION PROXY

o2t

LOG EVENT
608~"| DATABASE

DATABASE STORE
CONFIGURATION DATA [™-605

U.S. Patent

=TTttt T T T

104~

Oct. 4, 2016

L

SERVER

Sheet 1 of

6

100

FIG. 1

____________________________ ;
204 206 208 |

\ / / i/zoo

PROCESSOR PERSISTENT

UNIT MEMORY STORAGE :
g = § 1
> |
i I g
1
1
COMMUNICATIONS INPUT/OUTPUT |
UNIT UNIT DISPLAY :
/ N \ I
210 212 214 1

220

COMPUTER
READABLE MEDIA

PROGRAM CODE

N
216

218

FiG. 2

US 9,460,169 B2

| 110

US 9,460,169 B2

Sheet 2 of 6

Oct. 4, 2016

U.S. Patent

£ DA wom
JHYMLIJ0S ANV FHVYMOHVYH
JHYMLH0S
HIAYAS SINF1SAS SINILSAS SHIAHIS
JHYMI40S NOILYDINddY @YILNIIIAVId @®@S3IIYISX FHNLIOILIHOHY
ISvavVIvVAd MHOMIAN OHNIMHOMIIN IHDVHOILS @Gl @INGI JSId SINVHANIVIA
NOILVZITYNLHIA
SIN3IITD SNOILYIIddV SHHOMLIN JOVHOLS SHIAYIS
IYNLHIA IVNLHIA IVALHIA IVNLHIA IYNLHIA
OO0 = & Go L
] EE 06
/
INFNADYNYIN

ININTIIHTNS
ONV INAPEINI// wsoe MO/ aNINOISIAOkd
NINNY
NS 3013 43sn ONIYILIN 30uN0s3Y -
/

SAVOTHHOM
AHAAIAA INAWADVYNVYIN
SSINTLVMY INISSIO0Hd omz%wu._wm_m& NOILYDNG F10A0341//" NOLLYOIAWN
Lany-11n NOILOVSNY! NOOUSSY any
v1vQd VL ININJOAXIADNIdIYIN
JHYMLAO

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,460,169 B2

402
CLOUD SERVICES J /400

RESOURCE 1 RESOURCE 2 | [RESOURCE N

404
COLLECTED AUDIT DATA

AUDIT SERVICES N-406

LOG EVENT LOG EVENT LOG EVENT
DATABASE DATABASE DATABASE | ~408

FIG. 4

MULTI-TENANT | 506
UNAWARE OMP

CRAW Lo@/504

CLOUD ENABLEMENT AGGREGATION PROXY

AGGREGATION SERVICE L~510

CUSTOMER INFORMATION SERVICE ~-512

LOG ANNOTATION SERVICE ~-514

TENANT SEPARATION PROXY

LOG EVENT
DATABASE 508

FIG. 5

502

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,460,169 B2
606
603 N
\ MULTI-TENANT
OTHER OMPs UNAWARE OMP
601

\ 604

OTHER OMPs RAW LOG DATA 800
r/ CUSTOMER

IDENTIFICATION SERVICE

610~ AGGREGATION SERVICE / CUSTOMER Id1 | Filter1
CUSTOMER Id2 | Filter2

CUSTOMER INFORMATION SERVICE

612~ “ e .
614-"1 LOG ANNOTATION SERVICGE CUSTOMER IdN | FilterN
CLOUD ENABLEMENT AGGREGATION PROXY /‘ \

618 620

|
DATABASE STORE
l CONFIGURATION DATA [™-605

(
602
LOG EVENT
608" DATABASE | FIG. 6

TENANT SEPARATION PROXY

U.S. Patent Oct. 4, 2016 Sheet 5 of 6 US 9,460,169 B2

MULTI-TENANT
OTHER OMPs UNAWARE OMP

OTHER OMPs RAW LOG DATA
\ CUSTOMER
IDENTIFICATION SERVICE

AGGREGATION SERVICE
CUSTOMER Id1 | Filter1
CUSTOMER INFORMATION SERVICE CUSTOMER 1d2 | Filter2
LOG ANNOTATION SERVICE
CUSTOMER IdN | FilterN

CLOUD ENABLEMENT AGGREGATION PROXY

|
DATABASE STORE
CONFIGURATION DATA

702-1 TENANT SEPARATION PROXY

Y
LOG EVENT | .
708 CUSTOMER
“L| 1d2 TABLE |722
FIG. 7

—y

U.S. Patent Oct. 4, 2016 Sheet 6 of 6 US 9,460,169 B2

MULTI-TENANT
OTHER OMPs UNAWARE OMP

OTHER OMPs RAW LOG DATA
\ CUSTOMER
IDENTIFICATION SERVICE

AGGREGATION SERVICE
CUSTOMER Id1 | Filtert

CUSTOMER INFORMATION SERVICE CUSTOMER 1d2 | Filter2

LOG ANNOTATION SERVICE
CUSTOMER IdN | FilterN

CLOUD ENABLEMENT AGGREGATION PROXY

Y

8021 TENANT SEPARATION PROXY

|
DATABASE STORE
CONFIGURATION DATA

. N ——__ 825
T A - CUSTOMER ID [ENRICHED]
Y

AUDIT EVENTS
LOG EVENT LOG EVENT LOG EVENT
DATABASE DATABASE DATABASE

(\
808a 808b 808¢
FIG. 8

US 9,460,169 B2

1

MULTI-TENANT AUDIT AWARENESS IN
SUPPORT OF CLOUD ENVIRONMENTS

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates generally to cloud-based environ-
ments and, in particular, to techniques to produce customer-
specific audit data for purposes of compliance analysis,
reporting, problem determination, and forensics, among
others.

2. Background of the Related Art

Businesses often have to provide information to show
compliance with different government regulations. These
regulations include, for example, the Sarbanes-Oxley (SOX)
Act, the Health Insurance Portability and Accountability Act
(HIPAA), and the like. Often times, compliance with these
and other regulations may be shown using information
contained in audit logs maintained by information technol-
ogy (IT) organizations. For compliance reasons, these audit
logs often are maintained for years. Audit logs are useful for
checking the enforcement and effectiveness of information
technology controls, accountability, and vulnerability, and/
or risk analysis. An information technology organization
also may use auditing of security related critical activities to
aid in forensic investigations, such as security incidents that
may occur. When a security incident occurs, an audit log
enables an analysis of the history of activities that occurred
prior to the security incident occurring. These activities
include, who did what, when, where, and how. With the
analysis of an audit log, appropriate corrective actions may
be taken. Audit logs are typically made available in rela-
tional databases to allow easy querying of the information
by reporting programs or software to generate operational
and trend reports.

While compliance may be seen to ensure the ability to
ensure that a security policy is enforced, compliance may
also be applied to other types of policy, such as service level
agreements (e.g., using timestamps on audit logs to ensure
that an overall Service Level Agreement (SLA) is satisfied),
legislative compliance (e.g., on control or release of privacy-
related information), or even policy management itself (e.g.,
who changed a policy, when and how, and was it in
compliance with the policy for compliance-policy-manage-
ment). Further, compliance with a particular policy, or a
detailed forensics examination of actions within a system,
may require more than just “audit” logs. It may also require
access to error and trace logs, typically used within the scope
of a problem determination examination.

An emerging information technology (IT) delivery model
is cloud computing, by which shared resources, software and
information are provided over the Internet to computers and
other devices on-demand. Cloud computing can signifi-
cantly reduce IT costs and complexities while improving
workload optimization and service delivery. With this
approach, an application instance can be hosted and made
available from Internet-based resources that are accessible
through a conventional Web browser over HTTP.

Emerging cloud environments are being created out of
existing [T infrastructures that are being adapted to support
cloud-based services. One key characteristic of cloud com-
puting that is different from existing environments is the
requirement for so-called “multi-tenant” support, sometimes
referred to as multi-customer single deployment. To satisfy
this requirement, service providers have to be able to isolate
different customer usage of the cloud services. In particular,
customers have compliance guidelines that they follow, and

10

15

20

25

30

35

40

45

50

55

60

65

2

need to follow, when using cloud services. These customers
look to service providers to support their compliance
requirements, and they desire to obtain data from the service
providers to use for compliance analysis. The service pro-
viders need to supply that data, but at the same time maintain
isolation between and among their specific customers that
are sharing cloud resources. Current IT infrastructures do
not allow for separating out compliance data contained in
log files and audit records.

BRIEF SUMMARY

This disclosure describes a method and system to enrich
(e.g., by annotation) received audit log data to enable such
data to be associated with appropriate tenants (sometimes
referred to herein as “customers™) in a multi-tenant cloud
deployment. The techniques described herein facilitate com-
pliance analysis, including reporting and forensics analysis,
without exposing one tenant’s data to another customer.

In one embodiment, a cloud enablement aggregation
proxy (CEAP) receives and processes audit data from
audited resources before such data is stored in a database.
The CEAP manages log data for resources hosted in a
multi-tenant shared pool of configurable computing
resources (e.g., a compute cloud). A method for managing
log data begins by the proxy aggregating and normalizing
log information received from a plurality of the resources.
The aggregated and normalized log information is then
parsed to identify a tenant associated with each of a set of
transactions. In one embodiment, the parsing step compares
an event pattern in a logged transaction against a set of
filters, wherein each filter in the set uniquely associates a
tenant-specific identifier and a particular event pattern. Upon
a match between the event pattern in a transaction and one
of the filters, the event pattern is annotated to include the
tenant-specific identifier. Thus, in this manner the CEAP
annotates log data to include tenant-specific identifiers
before that data is sent to data storage. An optional tenant
separation proxy (TSP) separates the annotated log data on
a per tenant basis prior to storage, and the tenant-specific log
data may be stored in per tenant data structures or dedicated
tenant log event databases to facilitate subsequent compli-
ance or other analysis.

In an alternative embodiment, the above-described
method is performed in an apparatus comprising a processor,
and computer memory holding computer program instruc-
tions that when executed by the processor perform the
method.

In another alternative embodiment, the above-described
method is performed by a computer program product in a
computer readable medium for use in a data processing
system. The computer program product holds computer
program instructions which, when executed by the data
processing system, perform the method.

The foregoing has outlined some of the more pertinent
features of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can
be attained by applying the disclosed invention in a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

US 9,460,169 B2

3

FIG. 1 depicts an exemplary block diagram of a distrib-
uted data processing environment in which exemplary
aspects of the illustrative embodiments may be imple-
mented;

FIG. 2 is an exemplary block diagram of a data processing
system in which exemplary aspects of the illustrative
embodiments may be implemented;

FIG. 3 depicts abstraction model layers of a cloud com-
pute environment according to an embodiment of the inven-
tion;

FIG. 4 depicts an existing approach wherein log data is
retrieved from audited resources and put into a database for
compliance analysis;

FIG. 5 illustrates a cloud enablement aggregation proxy
(CEAP) and tenant separation proxy (TSP) according to this
disclosure;

FIG. 6 illustrates a first embodiment of this disclosure by
which audit data is collected and maintained separately for
individual cloud tenants;

FIG. 7 illustrates a second embodiment of this disclosure
wherein the per tenant log data is made available in per
tenant data structures in a log event database; and

FIG. 8 illustrates a third embodiment of this disclosure
wherein the per tenant log data is made available in per
tenant log event databases.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with
reference to FIGS. 1-2, exemplary diagrams of data pro-
cessing environments are provided in which illustrative
embodiments of the disclosure may be implemented. It
should be appreciated that FIGS. 1-2 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
disclosed subject matter may be implemented. Many modi-
fications to the depicted environments may be made without
departing from the spirit and scope of the present invention.
Client-Server Network Model

With reference now to the drawings, FIG. 1 depicts a
pictorial representation of an exemplary distributed data
processing system in which aspects of the illustrative
embodiments may be implemented. Distributed data pro-
cessing system 100 may include a network of computers in
which aspects of the illustrative embodiments may be imple-
mented. The distributed data processing system 100 contains
at least one network 102, which is the medium used to
provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the
like. In the depicted example, server 104 provides data, such
as boot files, operating system images, and applications to
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the

10

15

20

25

30

40

45

50

55

60

65

4

Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the disclosed subject matter, and therefore, the particular
elements shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an
exemplary data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for illustrative
embodiments of the disclosure may be located.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is
an example of a computer, such as server 104 or client 110
in FIG. 1, in which computer-usable program code or
instructions implementing the processes may be located for
the illustrative embodiments. In this illustrative example,
data processing system 200 includes communications fabric
202, which provides communications between processor
unit 204, memory 206, persistent storage 208, communica-
tions unit 210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor
unit 204 may be a set of one or more processors or may be
a multi-processor core, depending on the particular imple-
mentation. Further, processor unit 204 may be implemented
using one or more heterogeneous processor systems in
which a main processor is present with secondary processors
on a single chip. As another illustrative example, processor
unit 204 may be a symmetric multi-processor system con-
taining multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware
that is capable of storing information either on a temporary
basis and/or a permanent basis. Memory 206, in these
examples, may be, for example, a random access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms depending on
the particular implementation. For example, persistent stor-
age 208 may contain one or more components or devices.
For example, persistent storage 208 may be a hard drive, a
flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media
used by persistent storage 208 also may be removable. For
example, a removable hard drive may be used for persistent
storage 208.

Communications unit 210, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing

US 9,460,169 B2

5

system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 208. These
instructions may be loaded into memory 206 for execution
by processor unit 204. The processes of the different
embodiments may be performed by processor unit 204 using
computer implemented instructions, which may be located
in a memory, such as memory 206. These instructions are
referred to as program code, computer-usable program code,
or computer-readable program code that may be read and
executed by a processor in processor unit 204. The program
code in the different embodiments may be embodied on
different physical or tangible computer-readable media, such
as memory 206 or persistent storage 208.

Program code 216 is located in a functional form on
computer-readable media 218 that is selectively removable
and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program
code 216 and computer-readable media 218 form computer
program product 220 in these examples. In one example,
computer-readable media 218 may be in a tangible form,
such as, for example, an optical or magnetic disc that is
inserted or placed into a drive or other device that is part of
persistent storage 208 for transfer onto a storage device,
such as a hard drive that is part of persistent storage 208. In
a tangible form, computer-readable media 218 also may take
the form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory that is connected to data processing
system 200. The tangible form of computer-readable media
218 is also referred to as computer-recordable storage
media. In some instances, computer-recordable media 218
may not be removable.

Alternatively, program code 216 may be transferred to
data processing system 200 from computer-readable media
218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212.
The communications link and/or the connection may be
physical or wireless in the illustrative examples. The com-
puter-readable media also may take the form of non-tangible
media, such as communications links or wireless transmis-
sions containing the program code. The different compo-
nents illustrated for data processing system 200 are not
meant to provide architectural limitations to the manner in
which different embodiments may be implemented. The
different illustrative embodiments may be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
200. Other components shown in FIG. 2 can be varied from
the illustrative examples shown. As one example, a storage
device in data processing system 200 is any hardware
apparatus that may store data. Memory 206, persistent
storage 208, and computer-readable media 218 are examples
of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using
any suitable type of architecture that provides for a transfer
of data between different components or devices attached to
the bus system. Additionally, a communications unit may
include one or more devices used to transmit and receive
data, such as a modem or a network adapter. Further, a
memory may be, for example, memory 206 or a cache such

10

15

20

25

30

35

40

45

50

55

60

65

6

as found in an interface and memory controller hub that may
be present in communications fabric 202.

Computer program code for carrying out operations of the
present invention may be written in any combination of one
or more programming languages, including an object-ori-
ented programming language such as Java, Smalltalk, C++
or the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer, or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-2. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the disclosed subject matter.

As will be seen, the techniques described herein may
operate in conjunction within the standard client-server
paradigm such as illustrated in FIG. 1 in which client
machines communicate with an Internet-accessible Web-
based portal executing on a set of one or more machines.
End users operate Internet-connectable devices (e.g., desk-
top computers, notebook computers, Internet-enabled
mobile devices, or the like) that are capable of accessing and
interacting with the portal. Typically, each client or server
machine is a data processing system such as illustrated in
FIG. 2 comprising hardware and software, and these entities
communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any
other communications medium or link. A data processing
system typically includes one or more processors, an oper-
ating system, one or more applications, and one or more
utilities. The applications on the data processing system
provide native support for Web services including, without
limitation, support for HTTP, SOAP, XML, WSDL, UDDI,
and WSFL, among others. Information regarding SOAP,
WSDL, UDDI and WSFL is available from the World Wide
Web Consortium (W3C), which is responsible for develop-
ing and maintaining these standards; further information
regarding HTTP and XML is available from Internet Engi-
neering Task Force (IETF). Familiarity with these standards
is presumed.

Cloud Computing Model

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models, all as
more particularly described and defined in “Draft NIST
Working Definition of Cloud Computing” by Peter Mell and
Tim Grance, dated Oct. 7, 2009.

US 9,460,169 B2

7

In particular, the following are typical Characteristics:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

The Service Models typically are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

The Deployment Models typically are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,

10

25

30

40

45

50

60

8

policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service-oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. A representative cloud computing node is as illus-
trated in FIG. 2 above. In particular, in a cloud computing
node there is a computer system/server, which is operational
with numerous other general purpose or special purpose
computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
computer system/server include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like. Computer
system/server may be described in the general context of
computer system-executable instructions, such as program
modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform
particular tasks or implement particular abstract data types.
Computer system/server may be practiced in distributed
cloud computing environments where tasks are performed
by remote processing devices that are linked through a
communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

Referring now to FIG. 3, by way of additional back-
ground, a set of functional abstraction layers provided by a
cloud computing environment is shown. It should be under-
stood in advance that the components, layers, and functions
shown in FIG. 3 are intended to be illustrative only and
embodiments of the invention are not limited thereto. As
depicted, the following layers and corresponding functions
are provided:

Hardware and software layer 300 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide)

US 9,460,169 B2

9

Virtualization layer 302 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 304 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 306 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and, according to the teachings of
this disclosure, multi-tenant audit awareness.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Thus, a representative cloud computing environment has
a set of high level functional components that include a front
end identity manager, a business support services (BSS)
function component, an operational support services (OSS)
function component, and the compute cloud component. The
identity manager is responsible for interfacing with request-
ing clients to provide identity management, and this com-
ponent may be implemented with one or more known
systems, such as the Tivoli Federated Identity Manager
(TFIM) that is available from IBM Corporation, of Armonk,
N.Y. In appropriate circumstances TFIM may be used to
provide federated single sign-on (F-SSO) to other cloud
components. The business support services component pro-
vides certain administrative functions, such as billing sup-
port. The operational support services component is used to
provide provisioning and management of the other cloud
components, such as virtual machine (VM) instances. The
cloud component represents the main computational
resources, which are typically a plurality of virtual machine
instances that are used to execute a target application that is
being made available for access via the cloud. One or more
databases are used to store directory, log, and other working
data. All of these components (included the front end
identity manager) are located “within” the cloud, but this is
not a requirement. In an alternative embodiment, the identity
manager may be operated externally to the cloud.

10

15

20

25

30

35

40

45

50

55

60

65

10
Auditing

FIG. 4 illustrates how log data is retrieved from audited
resources that are used to provide cloud services. In this
example, the cloud services 400 expose a set of resources
402 (e.g., resources 1-n) hosted in a shared pool of configu-
rable computing resources. Given the cloud paradigm
described above, the “resource” should be broadly construed
to cover any system, machine, process, program, applica-
tion, utility, object or data associated therewith. Typically,
collected audit data 404 is provided to an audit service 406,
which normalizes that data and puts into log event databases
408 to allow for analyzing the data and creating reports that
can be used for compliance. Audit service 406 typically
comprises a distributed set of machines, programs and
associated data structures that collectively provide the ser-
vice, all in a known manner. As used herein, an audited
resource within the cloud services environment is sometimes
referred to herein as an operational management product
(OMP). In this context, an OMP typically is deployed in a
single customer environment and, as such, its associated log
data does not include any information that can serve to
distinguish that data from similar data generated by other
such sources. In this respect, the OMP is said to be “multi-
tenant unaware.” As a consequence, the audit service (such
as shown in FIG. 3) is not set up to support the inclusion
with the logged data of a “customer identity.” Thus, multi-
tenant support for auditing is not available.

Multi-Tenant Audit Awareness

The subject disclosure addresses this need, as is now
described. With reference to FIG. 5, and according to this
disclosure, an audit service comprises several additional
components to facilitate customer-specific logging in a
multi-tenant cloud-based environment. In particular, prefer-
ably the service comprises a “cloud enablement aggregation
proxy” (or CEAP) 500, and an optional “tenant separation
proxy” (or TSP) 502. This nomenclature should not be taken
to limit this disclosure, but is only used for convenience.
Generally, the cloud enablement aggregation proxy 500
receives raw log data 504 from one of more multi-tenant
unaware resources, one of which is shown at reference
numeral 506. In one embodiment, and as noted above, the
multi-tenant unaware resource may be an OMP operating
within the context of an authentication and authorization
framework that controls access to information and
resources. One commercially-available framework of this
type for protecting web resources is Tivoli Access Manager
for e-business (TAMeb), also known as WebSEAL. Of
course, the techniques described herein are useful for any
type of log data irrespective of how that data is generated.

More generally, the log data (e.g., records, audit data,
event messages, and the like) may be generated by any
aspect of the computing environment associated with the
resource 506 including, without limitation, software appli-
cations, event loggers, audit services, hardware auditing
components, kernel modules, and the like. Log data may be
generated as a result of the execution of some function, or
as a result of a lack of activity. As used herein, the particular
data should be broadly construed, and the term “record”
should not be construed to be limited to a particular required
data format or data structure.

As will be described below, the cloud enablement aggre-
gation proxy 500 processes that data 504, and it then outputs
the processed data to the tenant separation proxy 502, which
then writes the “enhanced” data to a log event database 508.

In this embodiment, the cloud enablement aggregation
proxy 500 comprises a set of services (or functions), which
are identified in the drawing as an aggregation service 510,

US 9,460,169 B2

11

a customer identification service 512, and a log annotation
service 514. These services may be integrated with one
another in whole or in part. The aggregation service 510
identifies the tenant/customer associated with a particular
transaction or audit log (represented by raw log data 504).
The customer information service 512 maintains customer
information tags that are used to identify the different tenants
(customers) and their associated tenant-specific data. The
log annotation service 514 optionally functions to annotate
the log raw log data that has been determined (by services
510 and 512) to be associated with the specific tenant. The
tenant separation proxy 502, which is an optional compo-
nent, preferably handles writing of the data (as processed by
the cloud enablement aggregation proxy 500) to the log
event database 508. This write operation is performed
according to a local configuration enforced by the tenant
separation proxy when the proxy is implemented as part of
the solution.

The proxies 500 and 502 typically are implemented in
software, stored in computer memory as a set of computer
program instructions, and executed by one or more proces-
sors as a specialized or dedicated machine. The proxies 500
and 502 may be combined together as a single proxy, or one
or more functions thereof (such as services 510, 512 or 514)
may be distributed across multiple machines. The proxies
may be located in different network or geographic locations,
and they may be located remotely from the resource 506 or
database 508.

A more detailed description of the operation of the cloud
enablement aggregation proxy 600 is seen in FIG. 6. As
illustrated, in addition to receiving raw log data from the
multi-tenant unaware resource 606 (or multiple such
resources), the aggregation service 610 also receives
input(s) from multiple other sources (OMP or others) within
the cloud environment including, without limitation, routers,
session management caches, reverse DNS, reverse proxies,
user registries, and the like. These disparate sources are
represented in FIG. 6 by resources 601 and 603. Using a
Customer Identification Service (CIS) component 615 of the
customer information service 612, the aggregation service
610 uniquely identifies the customer/tenant that an entity
(typically an end user client browser, rich client, or the like)
is bound to during a cloud service transaction. Preferably,
the aggregation service 610 implements a rules engine that
uses one or more rules to identify a tenant/customer from the
input data. As needed, the aggregation service 610 interacts
with CIS 615 as part of the unique customer identification.
For example, in some cases, a customer may be identified by
an IP address from which a request is initiated. In other
cases, a customer may be identified by an identity carried in
an SSL certificate associated with a secure transaction. In yet
another case, a customer may be “identified” indirectly, e.g.,
by a parameter selected in a drop-down screen as part of a
Web user interface (Ul)-based authentication. Thus, and to
this end, the CIS 615 maintains a set of customer identifi-
cation tags that can be used in various ways to identify the
different customers and/or other data (e.g., customer con-
tracts) needed to identify tenant-specific data. The customer/
tenant identifiers (IDs) stored may comprise a simple cus-
tomer number, a name, a hierarchical name, or some other
identifier that can be used to identify a customer that is using
a cloud service (perhaps with respect to a specific contract).

Because an entity in the environment may be bound to
multiple customers/tenants, it is not always possible to
simply identify a particular named individual as belonging
to a particular customer/tenant. Thus, the CIS 615 also
preferably comprises an association of “event patterns” with

10

15

20

25

30

35

40

45

50

55

60

65

12

customer identification tags. As used herein, preferably an
event pattern is defined by way of a filter. Thus, the CIS 615
comprises a data structure in the form of a table (or equiva-
lent data structure) that associates a Customer identifier
(1dN) 618 with one more associated Filter identifiers (each
a FilterN) 620.

In operation, the aggregation service 610 (and, in particu-
lar, the rules engine) takes the received input data, normal-
izes that data, and the tries to match the event patterns (as
described in the filters) against the normalized event data.
Events that match a pattern are then “enriched” with cus-
tomer-specific information, preferably by adding the cus-
tomer tag(s) into the normalized events, although other types
of enrichment may be used as well. By virtue of this
enrichment, i.e., the inclusion of such customer-specific
information, one or more other processes in the audit service
can then identify to which tenant the log data belongs. Thus,
for example, FIG. 6 illustrates the tenant separation proxy
602 feeding the annotated customer data into the log event
database 608. In this embodiment, the annotated data is
stored according to a local configuration 605. In operation,
the TSP 602 separates the data on a per tenant/customer
basis. As noted above, the TSP 602 is optional; if desired, the
CEAP 600 can feed directly to an existing database.

The technique used by the aggregation service to normal-
ize the received input data may vary. In one known
approach, a signed or encrypted copy of an unaltered record
is taken, and then parsing rules (e.g., XSLT-based or regular
expression-based rules) are applied to the copy. The rules
search for known patterns or known locations in the record,
extract the data, and map it into known fields in an XML/
CSV/text file with defined name/value pairs. The names
represent the “who/what/where” fields, and the value is the
data extracted from the record. This new file is then used for
generating reports. In another known approach, the record is
digitally signed (to ensure that it has been tampered with),
and then appended with additional information, such as the
“who/what/where” data, with the result then used for sub-
sequent reporting. Typically, each OMP’s specific log for-
mat is distinct.

As illustrated in FIG. 7, after separating the data on a per
tenant/customer basis, the TSP 702 may feed the log data
into individual customer tables 722 associated with the log
event database 708. Thus, there may be one or more tables
associated with each particular Customer IdN. In this
embodiment, the data may or may not be annotated on a per
customer level. In addition, and although not illustrated,
customers may also be provided the tenant-specific normal-
ized data to use for their own compliance purposes, e.g.,
storing log records for set time periods.

As illustrated in FIG. 8, following tagging by the CAEP,
and after the TSP 802 separates the data on a per tenant/
customer basis, the log data can be routed to individual log
event databases, three of which are shown at 808a, 8085 and
808c¢, based on additional configuration data. Preferably, in
this embodiment, there is a separate log event database 808
associated with each customer (i.e., one per tenant). The
additional configuration data may define other required
configurations (not shown).

In any of the above-described embodiments, the enriched
log data can then be used to perform tenant-specific com-
pliance analysis against the data, and to produce tenant-
specific compliance reports.

Some of the audit and/or log data may be applicable to all
or some defined subset of customers. An example would be
log information about a patch update to a server on which
part of the BSS is hosted, or a fix applied to a hypervisor

US 9,460,169 B2

13

hosting images associated with a subset of customers. Thus,
according to the technique herein, a particular log record
also may be annotated to belong to more than one customer,
a subset of customers, or even all customers.

The technique described herein has several advantages.
Foremost, a cloud service provider can use the annotation
technique to ensure that log data is appropriately associated
with a particular tenant/customer. This enables the service
provider is meet its compliance requirements, while at the
same time providing tenant-specific log data that a particular
tenant/customer can use to meet its own such requirements.
Using the described above, compliance data contained in log
files and audit records is separated and annotated in a
manner that ensures integrity of that data, thus preserving
tenant (and end user) privacy and security concerns. The
CEAP conveniently aggregates information from disparate
sources, identifies the particular tenants associated with each
transaction, and enhances the audit log information with
tenant-specific identifiers so that the data can be used for
tenant-specific analysis. A multi-tenant unaware resource
may take advantage of this approach to ensure that the log
data generated by logging of that resource is useful, even as
the resource is shared. This approach facilitates multi-tenant
audit awareness within a cloud compute environment, even
for multi-tenant unaware products, further enhancing the
value of the cloud services.

The functionality described above may be implemented as
a standalone approach, e.g., a software-based function
executed by a processor, or it may be available as a managed
service (including as a web service via a SOAP/XML
interface). The particular hardware and software implemen-
tation details described herein are merely for illustrative
purposes are not meant to limit the scope of the described
subject matter.

More generally, computing devices within the context of
the disclosed invention are each a data processing system
(such as shown in FIG. 2) comprising hardware and soft-
ware, and these entities communicate with one another over
a network, such as the Internet, an intranet, an extranet, a
private network, or any other communications medium or
link. The applications on the data processing system provide
native support for Web and other known services and
protocols including, without limitation, support for HTTP,
FTP, SMTP, SOAP, XML, WSDL, SAML, WS-Trust,
UDDI, and WSFL, among others. Information regarding
SOAP, WSDL, UDDI and WSFL is available from the
World Wide Web Consortium (W3C), which is responsible
for developing and maintaining these standards; further
information regarding HTTP, FTP, SMTP and XML is
available from Internet Engineering Task Force (IETF).
Familiarity with these known standards and protocols is
presumed.

The scheme described herein may be implemented in or
in conjunction with various server-side architectures other
than cloud-based infrastructures. These include, without
limitation, simple n-tier architectures, web portals, federated
systems, and the like.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred
embodiment, and as noted above, the cloud enabling aggre-
gation proxy function is implemented in software, which
includes but is not limited to firmware, resident software,
microcode, and the like. The data (e.g., the annotated log
data, audit records, and the like) can be configured into a
data structure (e.g., an array, a linked list, etc.) and stored in

30

40

45

50

14

a data store, such as computer memory. Furthermore, as
noted above, the multi-tenant audit awareness functionality
described herein can take the form of a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain or store the program for use by or in
connection with the instruction execution system, apparatus,
or device. The medium can be an electronic, magnetic,
optical, electromagnetic, infrared, or a semiconductor sys-
tem (or apparatus or device). Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD. The computer-readable medium is a tangible
item.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those instructions or code
may be stored in a computer readable storage medium in a
data processing system after being downloaded over a
network from a remote data processing system. Or, those
instructions or code may be stored in a computer readable
storage medium in a server data processing system and
adapted to be downloaded over a network to a remote data
processing system for use in a computer readable storage
medium within the remote system.

In a representative embodiment, the multi-tenant auditing
components are implemented in a special purpose computer,
preferably in software executed by one or more processors.
The associated configuration (security levels, status, timers)
is stored in an associated data store. The software also is
maintained in one or more data stores or memories associ-
ated with the one or more processors, and the software may
be implemented as one or more computer programs.

The multi-tenant auditing function may be implemented
as an adjunct or extension to an existing audit service,
logging service, or access manager solution. The technique
also may be implemented in an automated compliance
manager solution. One such automated solution is available
commercially as Tivoli® Compliance Insight Manager,
available from IBM® Corporation. This solution is a secu-
rity compliance system, which operates on or across a
network within or across an enterprise environment to
collect, analyze and archive log data and to produce detailed
security reports on information security policy compliance.
A compliance manager system typically comprises a server,
one or more actuators, a Web-based portal, and a manage-
ment console. The server collects, archives, normalizes, and
reports on log data from audited systems and devices. An
actuator is a software component that maintains a secure
connection between the server and one or more software
agents running on each audited system. Actuator scripts
enable the software agent to collect data (such as, without
limitation, audit data) from supported platforms, which are
also referred to as “event” sources. In operation, devices and
systems are instrumented with the software agents. These
devices and systems generate logs of user activities, pro-
cesses, and event every time a person or system interacts
with the network. These logs provide a record of all network
activities and can be analyzed to show whether user behav-
ior is in compliance with a given policy.

US 9,460,169 B2

15

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

As used herein, the “client-side” application should be
broadly construed to refer to an application, a page associ-
ated with that application, or some other resource or function
invoked by a client-side request to the application. A
“browser” as used herein is not intended to refer to any
specific browser (e.g., Internet Explorer, Safari, FireFox, or
the like), but should be broadly construed to refer to any
client-side rendering engine that can access and display
Internet-accessible resources. A “rich” client typically refers
to a non-HTTP based client-side application. Further, while
typically the client-server interactions occur using HTTP,
this is not a limitation either. The client server interaction
may be formatted to conform to the Simple Object Access
Protocol (SOAP) and travel over HTTP (over the public
Internet), FTP, REST, or any other reliable transport mecha-
nism (such as IBM® MQSeries® technologies and CORBA,
for transport over an enterprise intranet) may be used. Any
application or functionality described herein may be imple-
mented as native code, by providing hooks into another
application, by facilitating use of the mechanism as a
plug-in, by linking to the mechanism, and the like.

Having described our invention, what we now claim is as
follows.

The invention claimed is:

1. A method of managing log data generated by resources
hosted in a multi-tenant shared pool of configurable com-
puting resources, comprising:

aggregating and normalizing log information received

from a plurality of the resources hosted in the multi-
tenant shared pool of configurable computing
resources, at least one of the configurable computing
resources being a multi-tenant unaware resource that is
shared among at least first and second tenants, the
multi-tenant unaware resource generating log informa-
tion that does not include any information that, by
itself, can serve to distinguish which of the first and
second tenants use the multi-tenant unaware resource,
the log information being normalized by mapping data
within the log information into one or more name/value
pairs;

receiving input data as tenants carry out transactions in

the multi-tenant shared pool of configurable computing
resources, the input data being other than the generated
log information generated by the multi-tenant unaware
resource;

parsing the input data and the aggregated and normalized

log information to identify a tenant associated with
each of a set of transactions, wherein parsing compares
an event pattern in a transaction against a set of filters;
and

for each of the set of transactions, and based on the

parsing identifying a match between an event pattern in

5

10

15

20

25

30

35

40

45

50

55

60

65

16

a transaction against a filter in the set of filters, anno-
tating log data associated with the tenant and the
particular transaction to include a tenant-specific iden-
tifier;

wherein at least one of the aggregating, parsing and

annotating operations is carried out in program code
executing in a hardware element.

2. The method as described in claim 1 further including
storing the annotated log data for multiple tenants.

3. The method as described in claim 2 further including
separating the annotated log data on a per tenant basis prior
to storing.

4. The method as described in claim 1 wherein the set of
filters includes a filter that uniquely associates a tenant-
specific identifier and a particular event pattern.

5. The method as described in claim 4 wherein the
annotating step enriches event pattern data to include the
tenant-specific identifier that is associated with a match
between the event pattern in a transaction and one of the
filters in the set of filters.

6. The method as described in claim 1 wherein each of the
resources is a multi-tenant unaware resource.

7. The method as described in claim 1 further including
performing a compliance analysis on per tenant-specific log
data.

8. Apparatus to manage log data generated by resources
hosted in a multi-tenant shared pool of configurable com-
puting resources, comprising:

a processor;

computer memory holding computer program instructions

executed by the processor to perform operations com-

prising:

aggregating and normalizing log information received
from a plurality of the resources hosted in the
multi-tenant shared pool of configurable computing
resources, at least one of the configurable computing
resources being a multi-tenant unaware resource that
is shared among at least first and second tenants, the
multi-tenant unaware resource generating log infor-
mation that does not include any information that, by
itself, can serve to distinguish which of the first and
second tenants use the multi-tenant unaware
resource, the log information being normalized by
mapping data within the log information into one or
more name/value pairs;

receiving input data as tenants carry out transactions in
the multi-tenant shared pool of configurable com-
puting resources, the input data being other than the
generated log information generated by the multi-
tenant unaware resource,

parsing the input data and the aggregated and normal-
ized log information to identify a tenant associated
with each of a set of transactions, wherein parsing
compares an event pattern in a transaction against a
set of filters; and

for each of the set of transactions, and based on the
parsing identifying a match between an event pattern
in a transaction against a filter in the set of filters,
annotating log data associated with the tenant and the
particular transaction to include a tenant-specific
identifier.

9. The apparatus as described in claim 8 wherein the
operations further include storing the annotated log data for
multiple tenants.

10. The apparatus as described in claim 9 wherein the
operations further include separating the annotated log data
on a per tenant basis prior to storing.

US 9,460,169 B2

17

11. The apparatus as described in claim 8 wherein the set
of filters includes a filter that uniquely associates a tenant-
specific identifier and a particular event pattern.

12. The apparatus as described in claim 11 wherein the
annotating step enriches event pattern data to include the
tenant-specific identifier that is associated with a match
between the event pattern in a transaction and one of the
filters in the set of filters.

13. The apparatus as described in claim 9 wherein each of
the resources is a multi-tenant unaware resource.

14. The apparatus as described in claim 9 wherein the
operations further include performing a compliance analysis
on per tenant-specific log data.

15. A computer program product in a non-transitory
computer readable medium for use in a data processing
system to manage log data generated by resources hosted in
a multi-tenant shared pool of configurable computing
resources, the computer program product holding computer
program instructions which, when executed by the data
processing system, perform a method comprising:

aggregating and normalizing log information received

from a plurality of the resources hosted in the multi-
tenant shared pool of configurable computing
resources, at least one of the configurable computing
resources being a multi-tenant unaware resource that is
shared among at least first and second tenants, the
multi-tenant unaware resource generating log informa-
tion that does not include any information that, by
itself, can serve to distinguish which of the first and
second tenants use the multi-tenant unaware resource,
the log information being normalized by mapping data
within the log information into one or more name/value
pairs;

receiving input data as tenants carry out transactions in

the multi-tenant shared pool of configurable computing

10

15

20

25

30

18

resources, the input data being other than the generated
log information generated by the multi-tenant unaware
resource;

parsing the input data and the aggregated and normalized

log information to identify a tenant associated with
each of a set of transactions, wherein parsing compares
an event pattern in a transaction against a set of filters;
and

for each of the set of transactions, and based on the

parsing identifying a match between an event pattern in
a transaction against a filter in the set of filters, anno-
tating log data associated with the tenant and the
particular transaction to include a tenant-specific iden-
tifier.

16. The computer program product as described in claim
15 wherein the method further includes storing the annotated
log data for multiple tenants.

17. The computer program product as described in claim
16 wherein the method further includes separating the
annotated log data on a per tenant basis prior to storing.

18. The computer program product as described in claim
15 wherein the set of filters includes a filter that uniquely
associates a tenant-specific identifier and a particular event
pattern.

19. The computer program product as described in claim
18 wherein the annotating step enriches event pattern data to
include the tenant-specific identifier that is associated with a
match between the event pattern in a transaction and one of
the filters in the set of filters.

20. The computer program product as described in claim
15 wherein each of the resources is a multi-tenant unaware
resource.

21. The computer program product as described in claim
15 wherein the method further includes performing a com-
pliance analysis on per tenant-specific log data.

#* #* #* #* #*

